Adding Custom Model Artifact

BentoML integrates with the most popular machine learning frameworks. For the ML framework yet to integrate with BentoML, BentoML provides model artifact customizing…

The guide will demonstrate how to create a custom model artifact class, and then use it in BentoService for prediction

1. Create custom Artifact

The following code creates a subclass from the BentoServiceArtifact. It implements how to save and load the model. In the pack method, the model class does validation to make sure the model is valid. It uses cloudpickle to save and load.


import os
import json
from bentoml.utils import cloudpickle
from bentoml.exceptions import InvalidArgument
from bentoml.service.artifacts import BentoServiceArtifact

class MyModelArtifact(BentoServiceArtifact):
    def __init__(self, name):
        super(MyModelArtifact, self).__init__(name)
        self._model = None

    def pack(self, model, metadata=None):
        if isinstance(model, dict) is not True:
            raise InvalidArgument('MyModelArtifact only support dict')
        if model.get('foo', None) is None:
            raise KeyError('"foo" is not available in the model')
        self._model = model
        return self

    def get(self):
        return self._model

    def save(self, dst):
        with open(self._file_path(dst), 'wb') as file:
            cloudpickle.dump(self._model, file)

    def load(self, path):
        with open(self._file_path(path), 'rb') as file:
            model = cloudpickle.load(file)
        return self.pack(model)

    def _file_path(self, base_path):
        return os.path.join(base_path, + '.json')

2. Define and save BentoService with the custom Artifact


from my_model_artifact import MyModelArtifact
from bentoml import BentoService, env, api, artifacts
from bentoml.adapters import JsonInput
import bentoml

class MyService(bentoml.BentoService):

    @api(input=JsonInput(), batch=False)
    def predict(self, input_data):
        result = input_data['bar'] + self.artifacts.test_model['foo']
        return {'result': result}
from my_bento_service import MyService

svc = MyService()
model = {'foo': 2}
svc.pack('test_model', model)

3. Test with example data

$ bentoml serve MyService:latest

In another terminal to make a curl request

$ curl -i --header "Content-Type: application/json" \
  --request POST --data '{"bar": 1}' \
# Output
X-Request-Id: cb63a61e-dc2a-4e12-a91c-8b15316a99df
Content-Type: text/html; charset=utf-8
Content-Length: 20
Server: Werkzeug/0.15.4 Python/3.7.3
Date: Tue, 16 Mar 2021 01:47:38 GMT

'{"result": 3}'%